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Abstract—Despite the rise of deep learning in numerous areas
of computer vision and image processing, iris recognition has
not benefited considerably from these trends so far. Most of the
existing research on deep iris recognition is focused on new mod-
els for generating discriminative and robust iris representations
and relies on methodologies akin to traditional iris recognition
pipelines. Hence, the proposed models do not approach iris recog-
nition in an end-to-end manner, but rather use standard heuristic
iris segmentation (and unwrapping) techniques to produce nor-
malized inputs for the deep learning models. However, because
deep learning is able to model very complex data distributions
and nonlinear data changes, an obvious question arises. How
important is the use of traditional segmentation methods in a
deep learning setting? To answer this question, we present in this
paper an empirical analysis of the impact of iris segmentation on
the performance of deep learning models using a simple two stage
pipeline consisting of a segmentation and a recognition step. We
evaluate how the accuracy of segmentation influences recognition
performance but also examine if segmentation is needed at all. We
use the CASIA Thousand and SBVPI datasets for the experiments
and report several interesting findings.

Index Terms—Iris, recognition, segmentation, deep learning,
convolutional neural networks (CNN)

I. INTRODUCTION

Iris recognition has for a long time been one of the most
accurate and robust means of automated person identification.
With a research history of more than twenty years and
important applications in access control, banking, consumer
electronics and forensics, it also represents one of the most
mature branches of biometric recognition technology.

Iris recognition systems are typically composed of two main
components: i) an iris segmentation procedure that extracts the
region-of-interest (ROI), i.e., the iris area, from the input im-
age and maps the circular iris texture from a polar coordinate
system to a Cartesian one using the rubbersheet model, and ii)
an feature extraction (and recognition) procedure that encodes
the normalized texture into a descriptive and discriminative
feature vector that is then used for similarity measurements
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and identity inference. Multiple techniques have been pre-
sented in the literature for both the segmentation as well as
the texture-representation step and we refer the reader to [1]
for more information on existing approaches.

With the recent success of deep learning in different ar-
eas of computer vision, research in iris recognition is also
starting to look at deep learning methodologies. A number of
solution has been presented recently in the literature for iris
segmentation, e.g., [2]–[8], and recognition [9]–[12]. However,
these typically do not approach iris recognition in an end-
to-end manner, but either segment the iris using supervised
deep learning models and then represent the iris texture using
established iris encoding techniques, e.g., [13], or first segment
the iris from the input image using standard iris-segmentation
approaches and then process the unwrapped iris texture using
deep learning models, e.g., [9]. While the interaction of deep
segmentation models and standard iris representation tech-
niques has been studied recently [13], [14], the influence of
segmentation techniques on the performance of deep learning
models has, to the best of our knowledge, not been investigated
so far for the task of iris recognition.

In this paper, we try to address this gap and analyze
the impact of iris segmentation in a deep-learning-based iris
recognition system. We use an off-the-shelf convolutional
neural network (CNN) recognition model to encode the iris
texture and perform various experiments aimed at assessing the
impact of the segmentation procedure on the iris recognition
performance. Specifically, we perform experiments: i) with
automatically generated segmentation masks using CNN-based
segmentation models, ii) manually annotated ground-truth seg-
mentations, but also iii) without any segmentation masks at all.
Because deep models are able to model complex (nonlinear)
data changes, we skip the iris-unwrapping step altogether and
show that highly competitive performance can be achieved
even without normalizing the iris texture. For comparison pur-
poses we also include results for standard (heuristic) segmen-
tation techniques, followed by iris unwrapping. We conduct
experiments on the CASIA-Thousand (containing near infra-
red (NIR) images) and SBVPI (containing visible spectrum
(VIS) images) datasets and as a side product of our analysis
also show that a single CNN-based recognition model can be
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used to encode heterogeneous iris textures captured in different
parts of the EM spectrum.

In summary, we make the following main contributions in
this paper:

• We present an analysis of the impact of iris segmentation
on the recognition performance of deep learning models.

• We show that a single deep learning model can be used to
efficiently encode iris texture in both, the near infra-red
as well as the visible spectrum.

• We make all models, weights and source code publicly
available via https://github.com/jus390/segInfluence

The rest of the paper is structured as follows: In Section II
we briefly review the related work of relevance to this pa-
per. In Section III we describe the model we used for our
evaluation and procedure used to learn the model parameters.
In Section IV we present the results of our experiments and
discuss our main findings. Finally we conclude the paper in
Section V.

II. RELATED WORK

As indicated above, deep iris recognition is still a developing
research area and not many solutions have been presented in
the literature so far. In this section, we cover only existing
work related to deep iris recognition and refer the reader to [2],
[3], [13], [14] for more information on deep models for other
iris-related problems, such as segmentation.

The first deep iris recognition approach was presented in
2016 [9]. Here, the authors, Gangwar and Joshi, presented two
architectures, collectively called DeepIrisNet. The first uses
a simple VGG-like [15] structure, while the second replaces
the final two blocks with inception modules [16]. The authors
identify individuals based on the features obtained from the
final fully connected layer, which are compared using the
Euclidean distance. In [10] a light weight architecture with
a much smaller amount of training parameters is presented.
Here, the authors capitalize on use of texture-like information,
favoring features from the convolutional layers instead of the
fully connected layer. The authors binarize features using
an ordinal measure and compare feature vectors using the
Hamming distance. In [12], Zhao and Kumar present a pipeline
called UniNet, which consist of two sub-networks: MaskNet
and FeatNet. Both networks use preprocesed normalized iris
images. FeatNet is used to extract features encompassing
different levels of detail, while MaskNet removes details not
belonging to the iris. The authors also introduce a specialized
loss function called extended triplet loss, which directs training
towards more texture-like information. Finally, Nguyen et al.
[11] suggest using existing readily available (also referred
to as off-the-shelf) models for recognition. The authors test
a number of architectures, while also studying which layers
ensure the best results. The extracted features are compared
using a support vector machine (SVM).

The majority of approaches described above uses traditional
techniques to pre-segment and pre-normalize images before
feeding them to the CNN-models. Thus, these models still

follow standard iris processing pipelines, where an iris rep-
resentation is computed from segmented and unwrapped iris
textures. Here, we consider a different approach, where both
segmentation and iris-representation steps are implemented
using deep models, and study the impact of segmentation on
iris recognition performance in such a setting.

III. METHODS

In this section we describe the methodology used for our
analysis. We first discuss the deep learning framework used for
our experiments and then elaborate on the training procedure
used to learn the parameters of the experimental processing
pipeline.

A. Deep learning framework

For the experiments, we use a simple two-stage recognition
pipeline consisting of a segmentation step and a recognition
step, as illustrated in Fig. 1. The pipeline is straight-forward
and very flexible, which allows us to easily replace compo-
nents or introduce manually annotated segmentation masks
into the experimental setup.

As can be seen in Fig. 1, input images are first fed into
a segmentation model, which extracts a mask corresponding
to the iris area, i.e., the ROI. This mask is then multiplied
with the initial input image, masking out (i.e. multiplying them
with zero) image regions, which are not part of the iris. The
segmentation step and corresponding masking procedure can
be seen as a form of attention mechanism for the recognition
model that forces the model to learn only iris-related features
and to ignore other parts of the image, such as the periocular
region. The masked image is finally fed into the recognition
part (or better said, feature extraction part) of the pipeline,
which computes features for the identification procedure.

In our implementation we utilize a DeepLabV3+ [17] with
a MobileNet [18] backbone (and an output stride of 16) for
segmentation and an Xception [19] model for recognition.
We decided to use these particular models because they give
good results on a number of vision-realted tasks and feature a
relatively small amount of parameters that need to be learned
during training. Our final implementation has 29, 494, 217
open parameters, of which 2, 196, 033 come from the seg-
mentation model, and 27, 298, 184 come from the recognition
part. Our final models are roughly 320 MB large.

B. Training

In order to train the framework described above, ground
truth segmentation masks as well as identity labels are need
for all training data. Because only a small subset of the
training images we use (see Section IV-A for details) has
annotated segmentation masks, we trained our model in two
steps. The first step is dedicated to learning the parameters
of the segmentation part of the pipeline, and the second to
learning the parameters of the recognition model.

To learn the parameters of the segmentation model and
generate segmentation results that are best suited for the



Fig. 1. Illustration of the deep learning framework used in our analysis. The framework consists of two main steps: a segmentation and a recognition (or
encoding) step. The segmentation step extracts a mask of the iris region from the input image and uses the segmentation result to mask out all image pixels
not belonging to the iris. To achieve this the generated segmentation mask is multiplied with the input image. The masked iris region is fed to a deep (iris
recognition) model that is used to extract features for the recognition experiments.

subsequent recognition procedure, we trained both the seg-
mentation part of the pipeline as well as the the recognition
part in conjunction. We achieve this by using outputs of
both models (segmentation and recognition) each with its
own loss function. Binary cross entropy is used as the loss
over the segmentation outputs and categorical cross entropy
is utilized as the loss for the recognition model. The final
loss function is a weighted sum of both, but with a greater
weight on the segmentation loss. When setting weights for
the losses, we pay attention to normalize each function so
that they give results in a similar numeric range. Note that
the described procedure is a standard end-to-end training
procedure, which, to the best of our knowledge, has not been
used for iris recognition so far. Here, we use it as a training
step for the segmentation model only, as we have limited
training data with the needed ground truth segmentation masks
available. Because the amount of such data is not sufficient
to learn competitive recognition models, we use a secondary
learning step to learn the parameters of the recognition models.
However, with a sufficient amount of training data, the entire
model could be trained end-to-end.

Once training of the segmentation part is completed, we
continue with the second step of training. In this step we
train the recognition part on a larger amount of samples (see
Section IV-A for details). To make sure that the recognition
is trained only on the iris region, we freeze the layers of the
segmentation model, thus preventing changes in the segmenta-
tion results. Once the entire pipeline is trained, we use features
from one of the layers of the recognition models for comparing
iris images - Fig. 1 illustrates the feature extraction step for
the fully connected layer of the recognition model.

In both training steps augmentations are utilized in order to
increase the amount of available training data and avoid over-
fitting. We utilize variations in scale, rotation and location in
order to diversify our data and regularize the training. In both
steps we use the Adam optimizer [20] with a learning rate of
10−4 for optimization. We initialize the model using random
weights. We conducted training until we see no improvements

in the validation loss for 5 training epochs. Segmentation
training took around 30 minutes to complete, while recognition
was trained for roughly 10− 12 hours on a desktop PC with
an Intel I7 2600k processor and an NVIDIA GTX 1060 GPU
with 8 GB of RAM.

IV. EXPERIMENTS AND RESULTS

In this section we present the results of our experiments. We
first discuss the dataset and protocol used for the experiments
and then comment on the results of our assessment.

A. Dataset and experimental protocol

We select two datasets for our experiments, i.e., the CASIA-
Iris-Thousand [21] and SBVPI [22] datasets.

CASIA-Iris-Thousand dataset contain 20,000 images of
1000 subjects. Images from the CASIA dataset were captured
using a near-infrared camera, and show forward gazing with
and without glasses. The SBVPI dataset contains 3,708 images
of 110 subjects. Images from this dataset were captured in the
visible-light spectrum so they also contain color information.
Other than that, the eyes in SBVPI also exhibit large variations
in gaze direction, e.g. each subject has images looking up, left,
right and forward. Example images from both datasets can be
seen in the first row of Fig. 2. The CASIA and SBVPI images
have different resolution, so we resize all images to a fixed
size of 320× 320 pixels.

Using the two datasets introduced above, we construct
three datasets for training our deep iris recognition pipeline:
two containing only samples from the experimental datasets
and one constituting a balanced set of images from both
datasets. The first training dataset (referred as CASIA hereafter)
comprises data from the CASIA-Iris-Thousand dataset and
contains 14, 000 training images, 4, 000 validation images
and 2, 000 images that were left out for further testing. The
training images correspond to all 1, 000 individuals. 220 of
these images are used to train the segmentation part of our
pipeline, and are further split between the actual training
(154 images) and the validation data (66 images). The second



TABLE I
SEGMENTATION RESULTS ACHIEVED WITH THE TRAINED SEGMENTATION

MODEL ON THE VALIDATION DATA.

Validation set Training set Precision [in %] Recall [in %]
CASIA CASIA 91.79± 3.05 95.82± 2.32
CASIA SBVPI 6.42± 1.53 99.89± 0.29
SBVPI SBVPI 88.26± 6.44 90.57± 7.00
SBVPI CASIA 70.07± 19.22 63.07± 33.24
CASIA Combined 91.83± 3.04 95.54± 2.41
SBVPI Combined 93.27± 4.68 94.27± 4.12
CASIA + SBVPI Combined 91.97± 4.14 95.44± 3.08

training dataset (SBVPI hereafter) contains 1, 422 training and
656 validation samples belonging to 60 individuals from the
SBVPI dataset. Out of the available SBVPI training data,
332 image are use for training the segmentation part of
our pipeline and 58 of these are used for validation. The
third training set (referred to as COMBINED hereafter) used
images from both experimental datasets. The combined dataset
contains 2, 906 training samples and 1, 080 validation samples.
The combined segmentation dataset is constructed from all
images with annotated ground truth segmentation masks of
both segmentation datasets.

Our testing dataset consists of 552 annotated iris images cor-
responding to 23 individuals from both CASIA-Iris-Thousand
[21] and SBVPI dataset. The test set is kept constant for all ex-
periments and contains heterogeneous images captured in the
near-infrared (NIR) spectrum as well as iris images captured in
the visible-light (VIS) part of the EM spectrum. The variability
in our test set is, hence, across image characteristics (VIS vs.
NIR), presence of glasses, gender, ethnicity, gaze direction,
etc. The experimental dataset is constructed out of 220 images
from CASIA belonging to 11 individuals, while the other 332
were from SBVPI belonging to 12 individuals. Segmentation
was tested on the validation subset of each dataset in order to
utilize as many samples as possible.

To identify individuals we compare features from the global
average pooling layer at the top of the recognition backbone.
The reason for selecting the global average pooling layer
is the better performance observed during our preliminary
experiments, compared to the features from the fully connected
layer. For feature comparisons the cosine similarity is used.

For the analysis we conduct identification experiments (one
vs. many) in an all-vs-all experimental protocol. Thus, each
image in the test set is compared against a gallery comprised
of the the entire test set. Self-comparisons are excluded from
the results. We report results in terms of rank-1 and rank-
5 identification accuracy and also plot Cumulative Match
Characteristic (CMC) curves to provide more detailed insight
into the experiments.

B. Segmentation experiments

To be able to analyze the influence of the segmentation
procedure on the recognition performance of our deep iris
recognition pipeline, we require an estimate of the segmen-
tation performance of our model. Since we do not conduct
explicit experiments towards this end, we report the precision

and recall values achieved with our model on the validation
data during the training procedure. Note that the validation
data is not used directly to learn the parameters of the seg-
mentation model, but only to determine when to stop training.

The results in Table I and Fig. 2 show that the segmentation
model perform extremely well when data with the same
characteristics is used training and validation, e.g., NIR images
are used for training and validation. In this setting average
precision and recall values of close to (and over) 90% are
observed. Especially for the non-ideal iris images from the
SBVPI dataset captured under different gaze directions these
results are very competitive compared to traditional segmen-
tation approaches. If the model is trained on NIR images
and tested on VIS images (row 5 in Table I) or the other
way around (row 3 in Table I), the performance degrades
significantly. The best overall results on both types of images
(NIR and VIS) are achieved if the combined dataset is used
for training. Note that this result is not self-evident as the
validation images of the two datasets are considerably different
in terms of characteristics. To the best of our knowledge, this
work is the first to show that a single deep segmentation model
can be used to segment heterogeneous iris images.

C. Impact of segmentation

To assess the impact of the segmentation procedure on
the recognition performance, we conduct four series of ex-
periments using three different training datasets, i.e. CASIA,
SBVPI and Combined. In the first series (Masked hereafter) we
pre-multiply our images with the manually annotated segmen-
tation masks and feed them directly to the recognition model.
The idea of this test is to examine the recognition performance
with an ideal segmentation mask and compare this to the
results achieved with automatically generated segmentation
masks in the second series of experiments (marked Segmented
in the tables). In the third series of experiments, we evaluate
the recognition performance without segmentation (referred to
as Unmasked hereafter). The “unmasked experiment is used
as a baseline in our analysis to evaluate if the segmentation in
fact contributes towards better recognition or if using the entire
(non-segmented) image (including the periocular part) results
in equally good performance. The last series of experiments
uses normalized (unwrapped) iris samples. Different from the
first three experiments, the recognition model is trained on
normalized (square) iris textures instead of masked circular
irises. For the normalization procedure we use the iterative
Fourier push and pull algorithm from [23], which performed
best among different models tested in [3]. The results of the
experiments are presented in Tables II, and III and plotted in
the form of CMC curves in Fig. 3.

Model trained on CASIA: The model performs best using
the manually annotated segmentation masks and achieves
a Rank-1 accuracy of 91.85% in this experiment. This is
followed by the results of the unmasked test and finally by
the automatic segmentation, which comes in last. We assume
that the reason for this is the bad performance of the CASIA
segmentation model on samples that are not in CASIA (i.e.



Fig. 2. Examples of samples and their segmentations. In the first row we
present the input images followed by their manual annotations. The third
row contains the segmentation results of the models trained only on samples
from the matching dataset. The next row contains the results of segmentation
computed with the model trained on samples of the opposite model, e.g. a
sample from CASIA was used in the model trained on SBVPI and vice versa.
Finally the fifth row contains the segmentation results for the model that
was trained on the combined training set containing images from CASIA and
SBVPI. Note that despite the heterogeneous nature of the images, a single
model is capable of ensuring good segmentations for both types of images.

samples from SBVPI) as also seen in the third row of Fig.
2. Because the CASIA dataset is lacking color information
the segmentation isn’t able to detect the iris correctly in most
cases. We observe that the segmentation works much better in
cases where the value and color of the iris is similar as in the
greyscale NIR images.

Model trained on SBVPI: The model achieves the best
Rank-1 score of 96.01% on the unmasked images. Somewhat
surprisingly the manual mask proved to have the worst per-
formance, followed by the automatically segmented images
with slightly better results. The cause for this may be the
diversity in gaze directions present in SBVPI images and the
additional difficulty of the color information, which make it
difficult to learn discriminative features that generalize well for
all variations in image appearance using only so few samples.
We assume that with a larger dataset of similar characteristics
better results could be achieved. The unmasked samples offer
more information based on which the model can construct
more general features of the eye as a whole resulting in
better performance. From Fig. 2 (row three) we see that on
test samples from the CASIA dataset the segmentation also

TABLE II
RECOGNITION RESULTS FOR THE FOUR EXPERIMENTS. SEPARATE

RESULTS ARE SHOWN FOR EACH OF THE THREE TRAINING DATASETS.

Approach Training set Rank-1 accuracy Rank-5 accuracy
Masked CASIA 91.85% 97.46%
Segmented CASIA 81.52% 92.57%
Unmasked CASIA 87.68% 96.56%
Masked SBVPI 86.41% 95.65%
Segmented SBVPI 88.59% 94.75%
Unmasked SBVPI 96.01% 97.28%
Masked Combined 98.01% 99.82%
Segmented Combined 98.91% 100.00%
Unmasked Combined 93.66% 97.46%
In bold - best accuracy for each model

includes parts of the periocular region, which similarly as in
the unmasked experiment may boost performance.

Model trained on the combined dataset: This model per-
forms best among all trained models and is the only one
able to ensure equally good segmentation and recognition
performance on NIR as well as VIS images. Here, the best
performance of 98.1% in terms of rank-1 accuracy is achieved
by the model using the actual segmentation. From the example
(Fig. 2 last row) we see that the segmentation results appear
better than those of the competing models. The estimated
segmentation masks fit tighter to the iris regions and the
edges are sharper than those of the other models. The better
segmentation performance may be caused by the strong shape
information of the CASIA dataset and the diverse color
and gaze information, which provided the model with more
representative data to train on. Another simpler explanation
can be that the increase in performance is because of a larger
training dataset. From the visual examples in Fig. 2 we also
observe that the model doesn’t remove small details like
thin eyelashes on the surface of the eye, which are removed
in the manual annotations. This may also contribute to the
performance difference between the Masked and Segmented
experiment. Other than that the reason may lie in the joint
training of segmentation and recognition. For this model the
unmasked results performed worst, although still outperform-
ing the model trained only on CASIA.

Results for normalized iris textures: The models trained and
tested on normalized iris images preform worst among all
models, as seen in Table III and Fig. 3. The main reason for
this is that many samples from SBVPI were not normalized
correctly (e.g. the iris boundary was not correctly identified),
because of the large variability in gaze direction. Several
samples also have non-circular irises due to the change in per-
spective and are therefore harder to segment using traditional
techniques. The errors in normalization caused inconsistencies
in the normalized samples the result of which is unstable
recognition. This is also confirmed by the model trained
exclusively on SBVPI, which performs worst out of the three.
Still it seems as though the majority of correctly normalized
images were also correctly recognized, so we assume that
results can be improved using a more effective normalization
procedure.



Fig. 3. CMC curves of models trained on different datasets (CASIA, SBVPI, Combined). Results are shown for different scenarios, where i) manually annotated
masks are used in the experiments (Masked), ii) automatically generated masks are used (Segmented), iii) no segmentation masks are used (Unmasked), and
iv) the iris images are first processed using traditional segmentation techniques and then unwrapped before learning features using a deep iris recognition
model (Normalized).

TABLE III
RECOGNITION RESULTS WITH NORMALIZED (UNWRAPPED) IRIS IMAGES.

Approach Training set Rank-1 accuracy Rank-5 accuracy

Normalized
CASIA* 66.49% 82.97%
SBVPI* 64.67% 84.23%

Combined* 71.92% 86.05%
In * - Model trained on normalized samples

V. CONCLUSION

Based on our results we conclude that the use of iris
segmentation is important and beneficial in a deep learning
setting, under the condition that the segmentation model is able
to correctly segment the iris texture from the input images.
In our experiments the best results were achieved with a
model that incorporated an automatic segmentation step, which
achieved even better results than those ensured by manually
annotated segmentation masks.

Another benefit of segmentation, specifically for deep learn-
ing, became apparent during training. When training our
models on larger datasets (e.g. CASIA-Iris-Thousand) the
model only converged correctly (i.e. to a high enough degree),
when segmentation was utilized. When we trained directly
on the input images the model converged to a low accuracy
(10%-20%). So in our case the segmentation also reduced the
difficulty of the problem by directing recognition model to a
discriminative region, so training was easier.

We found no advantage in using unwrapped images. In
fact, we observed worse results when standard segmentation
procedures were used and irises were normalized. The reason,
for the worse recognition performance we observed, however,
was mostly due to errors in the normalization procedure caused
by the non-ideal iris images in the SBVPI dataset. Additional
research is needed to further investigate the impact of iris
normalization.
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